If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-20t-80=0
a = 4.9; b = -20; c = -80;
Δ = b2-4ac
Δ = -202-4·4.9·(-80)
Δ = 1968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1968}=\sqrt{16*123}=\sqrt{16}*\sqrt{123}=4\sqrt{123}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{123}}{2*4.9}=\frac{20-4\sqrt{123}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{123}}{2*4.9}=\frac{20+4\sqrt{123}}{9.8} $
| 6.5h+2=10 | | 0.125^x=1/2 | | 19-x=-6(3+6) | | (c+8)^2=16 | | 7-4n=-1 | | 125x=5x+12 | | 5-6x=17-8xx= | | 5(x+2)=88 | | 5.1=-6.1+7w | | 11+k=k+8-4 | | 9x+8–5x=3+4x+3 | | 3n+1=9+3n | | 6x+14-3x=20 | | -2=7/6x | | 9(x-3)^2=-63 | | -2=-7/4x | | 6x=-7-17 | | (9x-11)+(4x+1)+(7x-3)=180 | | 9=-3x+3+4x+2 | | 2b−(7b+3)=3(−1−6b)2b-(7b+3)=3(-1-6b) | | 5(y−3.2)=60 | | 5(y−3.2)=605(y−3.2)=60 | | x+0.09x=123750000 | | 8x-18=11x | | 7/8q=1/3 | | 27=46+2x+x | | 1/2+x/5=4.5 | | 4x+5=2x+8–5 | | 7=½x+17 | | 7=½x+1 | | 26+3n=72 | | y+7+2y=-14+3y=21 |